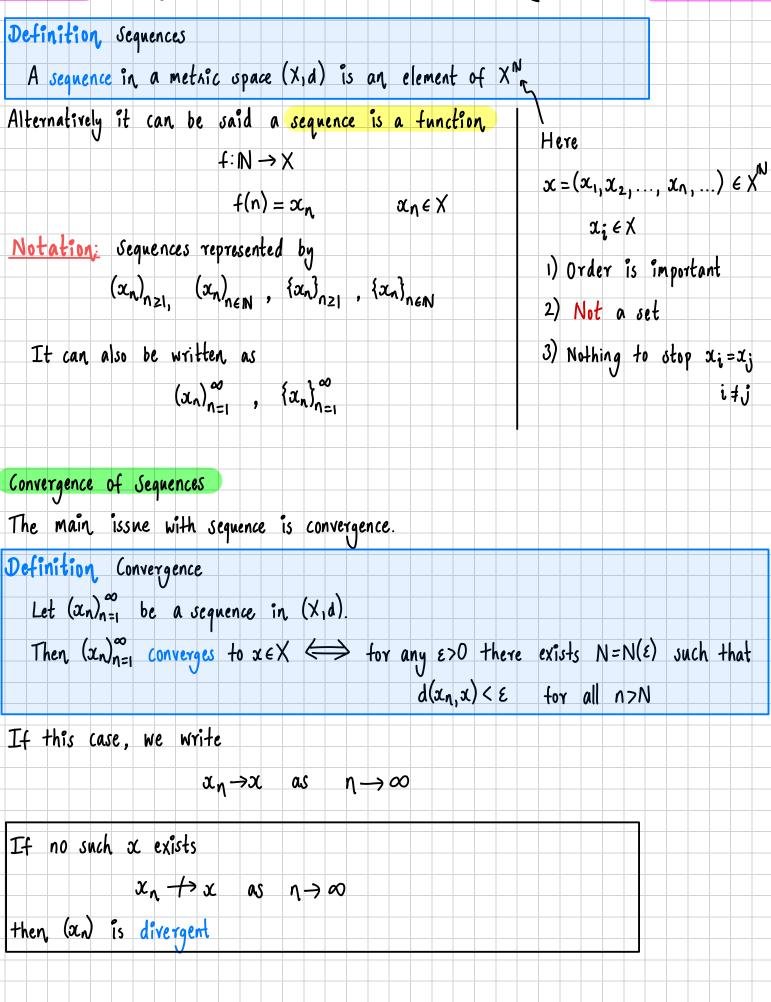
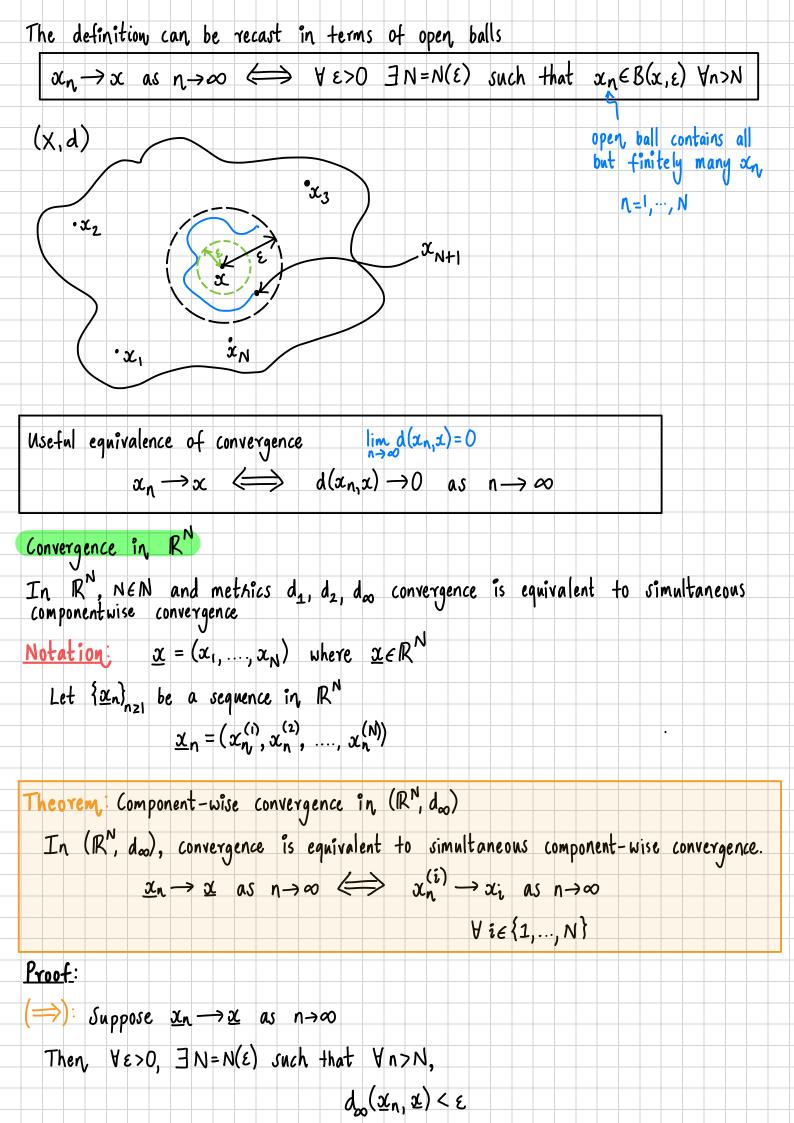
Sequences in Metric Spaces





$$d_{\infty}(\underline{x}n,\underline{x}) < \varepsilon \implies \max\{|x_n^{(i)} - x_i| : 1 \le i \le N\} < \varepsilon$$

$$\implies |x_n^{(i)} - x_i| < \varepsilon \quad \text{for any} \quad i \in \{1, ..., N\} \quad \text{for any} \quad n > N$$

if it holds for the maximum, it holds for any one in particular.

This means that real sequence $(x_n^{(i)})$ converges to x_i

$$\mathfrak{X}_{n}^{(\mathbf{i})} \rightarrow \mathfrak{X}_{\mathbf{i}}$$
 as $n \rightarrow \infty$

$$(\Leftarrow)$$
: For each $i \in \{1, ..., N\}$, the sequence $(x_n^{(i)})$ convergent to x_i

Want to show that $\underline{x}_n \rightarrow \underline{x}$ as $n \rightarrow \infty$

Then for any $i \in \{1, ..., N\}$, $\exists N_i > 0$ such that

$$x_n^{(i)} - x_i | < \varepsilon \quad \forall n > N_i$$

Drawing the diagram

$$\underline{x}_{1} = (x_{1}^{(1)}, x_{1}^{(2)}, x_{1}^{(3)}, \dots, x_{1}^{(N)})$$

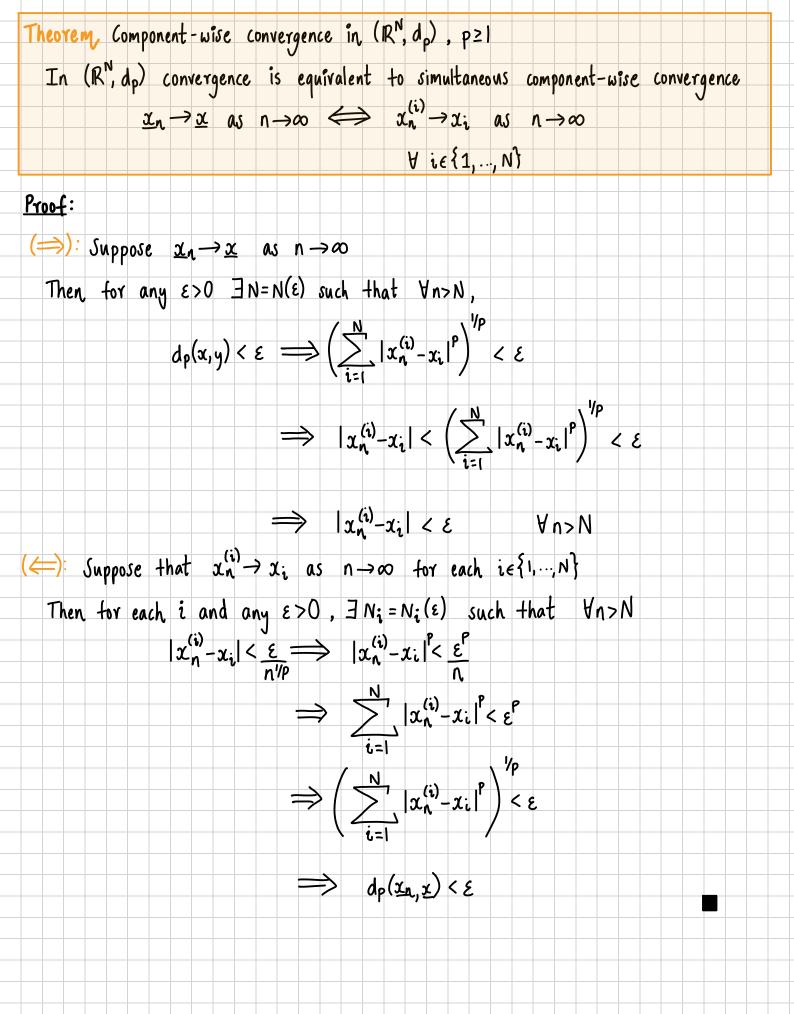
$$\underline{x}_{2} = (x_{2}^{(1)}, x_{2}^{(2)}, x_{2}^{(3)}, \dots, x_{2}^{(N)})$$

$$\underline{x}_{3} = (x_{3}^{(1)}, x_{3}^{(2)}, x_{3}^{(3)}, \dots, x_{3}^{(N)})$$

Let $N := \max\{N_1, ..., N_N\}$ Then $|x_n^{(i)} - x_i| < \varepsilon \quad \forall n > N$ and each $i \in \{1, ..., N\}$

At each such $n \ge N$, at least one of the terms $|x_n^{(i)} - x_i|$ is maximal but this means that

$$d(\underline{x}_n, \underline{x}) < \varepsilon$$
 for each $n > N$



Function, sequences

Consider $X \subseteq \mathbb{R}$. If to every n=1,2,..., is assigned a real valued function f_n , $(f_n)_{n\geq 1}$ is a function sequence in X

Definition Pointwise convergence of functions

Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions $f_n: X \rightarrow Y$. The function f is the pointwise limit of sequence $f_n \iff f_{on}$ any $x_o \in X$, $\lim_{n \to \infty} f_n(x_o) = f(x_o)$ (take x_o and fix it)

In which case we say that fn converges to f pointwise $f_n \xrightarrow{Pt} f$

he
$$\varepsilon$$
- δ definition for pointwise convergence
 $\lim_{N \to \infty} f_n(x) \to f(x) \iff given \varepsilon > 0$ and $x \in X \exists N = N(x, \varepsilon) \in N$ s.t $\forall n > N,$
 $\int_{N \to \infty} |f(x) - f_n(x)| < \varepsilon$

(here, take an $x \in X$ and fix it, check $\lim_{x \to 0} f_n(x) = f(x)$)

Uniform convergence

Τ

A function converges uniformly, we can find a <u>single E</u> that works for all xEX and therefore

N=N(E) no dependance on x

E-5 definition of uniform convergence

 $f_n \rightarrow f \quad uniformly \iff given \quad \epsilon > 0, \exists \ N = N(\epsilon) \in \mathbb{N} \quad s.t \quad \forall n > N$ $|f(x) - f_n(x)| < \epsilon \quad \forall x \in X$

Example: To show that different metrics on the same set can have different convergent sequences

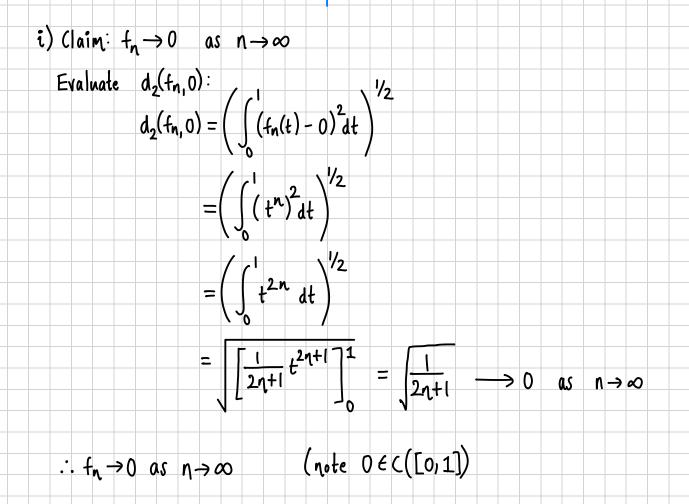
 f_2

Consider function sequence $(f_n)_{n=1}^{\infty}$ where $f_n \in C[0,1]$ and

$$f_n[0,1] \rightarrow \mathbb{R}$$
; $t \mapsto t^n$ space of continuous function

Ask about convergence with respect to n i) d_2 metric $d_2(f,g) = (\int_0^1 (f(t) - g(t)) dt)^{1/2}$

ii)
$$d_{\infty}$$
 metric $d_{\infty}(f,g) = \sup\{|f(t)-g(t)|:t \in [0,1]\}$



ii) Does
$$f_n \rightarrow 0$$
 as $n \rightarrow \infty$ if we are in (C[0,1], d_∞)

Evaluate d_{oo}(f_n, 0):

$$d_{\infty}(f_{n}, 0) = \sup\{|f_{n}(t) - 0| : t \in [0, 1]\}$$

= $\sup\{|f_{n}(t)| : t \in [0, 1]\}$
= $\sup\{t^{n} : t \in [0, 1]\}$
= $1 \rightarrow 0$ as $n \rightarrow \infty$

Theorem

Suppose
$$(X,d)$$
 and (X,\tilde{d}) are equivalent $\exists \lambda > 0$ such that
 $(x_n)_{n=1}^{\infty}$ converges to x in (X,d) $\forall \lambda \tilde{d}(x,y) \leq d(x,y) \leq \lambda \tilde{d}(x,y)$

$$(x_n)_{n=1}^{\infty}$$
 converges to x in $(X_i \tilde{d})$

Proof:

Suppose that
$$x_n \rightarrow x$$
 as $n \rightarrow \infty$ in (X,d)
Let $\varepsilon > 0$ be given and set $\tilde{\varepsilon} = \varepsilon/\lambda$
Then, $\exists N > 0$ such that $d(x,x_n) < \tilde{\varepsilon} = \varepsilon$ $\forall n > N$
But $\frac{1}{\lambda} \tilde{d}(x_n,x) < d(x_n,x) < \tilde{\varepsilon} = \varepsilon$

and therefore

$$\widetilde{d}(x_n, x) \leq \lambda d(x_n, x) < \lambda \widetilde{\epsilon} = \chi \underline{\epsilon} = \epsilon$$

$$d(x_n, x) < \varepsilon$$

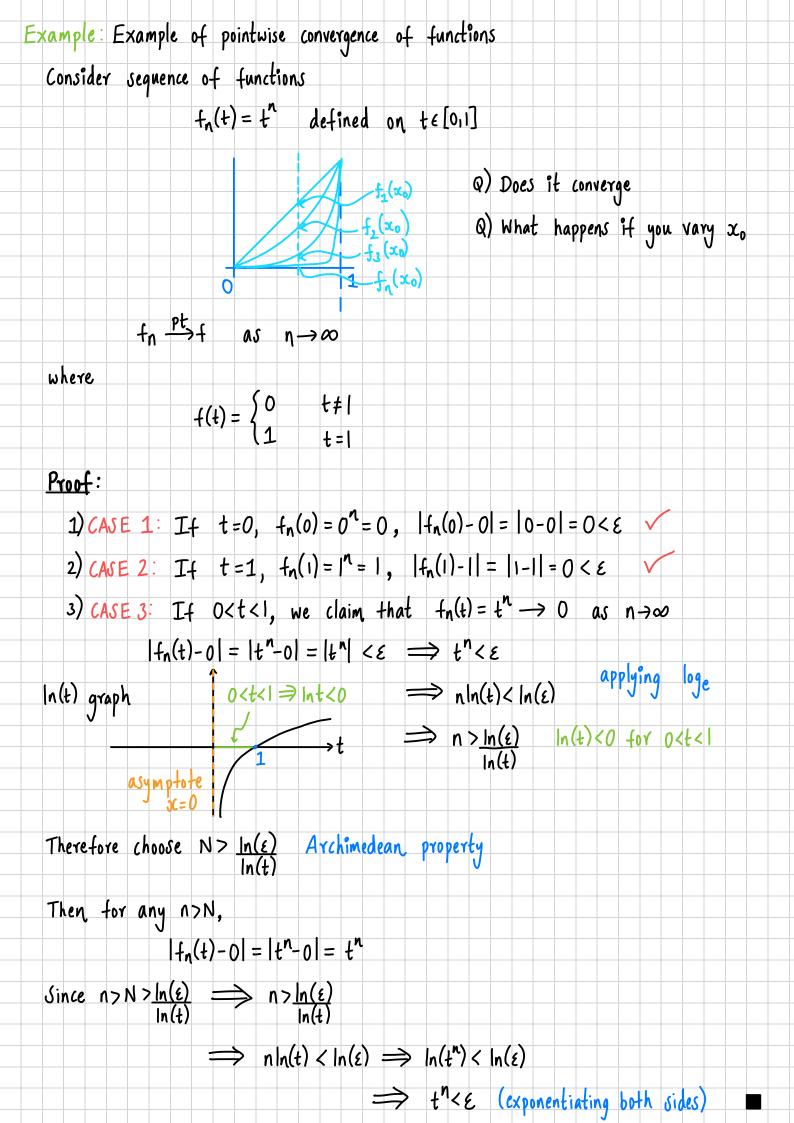
$$(\Longrightarrow): Suppose x_n \rightarrow x with respect to \tilde{d} .
Let $\varepsilon > 0$ be given and set $\hat{\varepsilon} = \varepsilon / \lambda$.
Then $\exists N > 0$ such that $\tilde{d}(x_n, x) < \frac{\varepsilon}{\lambda}$ $\forall n > N$
That is $\lambda \tilde{d}(x_n, x) < \varepsilon$ $\forall n > N$
But $d(x_n, x) \leq \lambda \tilde{d}(x_n, x) < \varepsilon$ $\forall n > N$$$

Uniqueness of Limits

Theorem: Uniqueness of Limits Let (X, d) be a methic space Suppose $x_n \rightarrow x$ as $n \rightarrow \infty$ and $x_n \rightarrow y$ as $n \rightarrow \infty$. Then X=y That is limit of convergent sequences are unique <u>Proof</u>: (uniqueness proofs: use contradiction): Lets assume x = y. Thus $d(x,y) = \varepsilon > 0$ and set $\varepsilon = \delta/2$ As $x_n \rightarrow x$ as $n \rightarrow \infty$ $\exists N = N(s) > 0$ such that $d(x_n, x) < \delta = \epsilon/2 \quad \forall n > N$ Similarly since $x_n \rightarrow y$ as $n \rightarrow \infty$, $\exists \hat{N} = \hat{N}(S) > 0$ such that $d(x_n, y) < \delta = \epsilon/2$ $\forall n > N$ Set $M = \max\{N, \hat{N}\}$. Then both conditions hold, i.e. $d(x_{n},x) < \varepsilon$ <u>AND</u> $d(x_{n},y) < \varepsilon$ $\forall n > M$

By triangle inequality, $d(x,y) \leq d(x,x_n) + d(x_n,y)$ $< \delta + \delta$ $= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall n > M$ But $d(x,y) = \varepsilon \implies contradiction$

Therefore x=y



Note: Our abstract notion of convergence of a sequence contains the classical notion. (\mathbb{R}, d_1) , $d_1(x, y) = |x - y|$ Also contains (\mathbb{R}^2, d_2) and (\mathcal{C}, d_2) $d_2(\mathbb{Z}, \mathbb{Z}') = |\mathbb{Z} - \mathbb{Z}'|$ Note: Series (R,d) Recall we are often concerned with sums that have infinite terms; $S_{\infty} = \sum_{n=1}^{\infty} x_n$ where S_{∞} is the limit (if it exists) of the sequence $S_N = \sum_{n=1}^{N} x_n$ (partial sums) We want S₀₀ = lim S_N N→∞ This can be moved to an abstract metric space if (X,d) has a notion of addition. (may not in general) Cauchy Sequences Cauchy sequences deal with closeness of terms Definition, Cauchy Jequences Suppose (X,d) is a metric space and $(x_n)_{n=1}^{\infty}$ a sequence in X. (x_n) is Cauchy $\iff \forall \epsilon > 0, \exists N=N(\epsilon)>0$ such that $d(x_m, x_n) < \varepsilon \quad \forall m, n > N$ x

Remark: Nowhere in the definition of Cauchy do we assume that $x_n \rightarrow x$.

No such a may exist. Cauchy sequence need not be convergent

xample: Cauchy sequence that is not convergentTake any sequence of rational numbers
$$Pn/qn$$
 for which $(Pn/qn)^2 \rightarrow 2$ as $n \rightarrow \infty$ $Q = \{m/n : m \in \mathbb{Z}, n \in \mathbb{N}\}$

 P_n/q_n is Cauchy sequence but no x exists in Q such that $\lim_{n \to \infty} \frac{P_n}{q_n} = x$

Convergent \Longrightarrow Canchy

Theorem convergent
$$\Longrightarrow$$
 Cauchy
Let (X, d) be a metric space and $(x_n)_{n=1}^{\infty}$ be a convergent sequence to x . Then,
 $(x_n)_{n=1}^{\infty}$ is Cauchy
Proof: Let $\varepsilon > 0$ be given. Set $\delta = \frac{\varepsilon}{2}$
Then, $\exists N = N(\delta) > 0$ such that $d(x_n, x) < \delta = \frac{\varepsilon}{2}$ $\forall n > N$
But now $d(x_n, x_m)$ where $n > N$ satisfies
 Δ -inequality: $d(x_n, x_m) \leq d(x_n, x) + d(x, x_m)$
 $< \delta + \delta = \varepsilon$
So $(x_n)_{n=1}^{\infty}$ is Cauchy
Another equivalent defn. for Cauchy
 $(x_n)_{n=1}^{\infty}$ is Cauchy $\iff d(x_m, x_n) \rightarrow 0$ as $m, n \rightarrow \infty$

Example of a Cauchy function sequence

Consider space C([0,1]), the sequence f_1, f_2, f_3, \dots given by

$$f_n(x) = \frac{nx}{n+x}$$

with uniform metric

$$d_{\infty}(f, g) = \sup \{|f(x) - g(x)|$$

Therefore calculating $d_{00}(f_{m_1}f_n)$ $d_{00}(f_{m_1}f_n) = \sup\{|f_{m}(x) - f_{n}(x)| : x \in [0,1]\}$ $= \sup\{|mx| - nx| : x \in [0,1]\}$

=
$$\sup \left\{ \frac{(m-n)x^2}{(m+x)(n+x)} : x \in [0,1] \right\}$$
 extreme
 $\left\{ \frac{(m+x)(n+x)}{(m+x)(n+x)} \right\}$

Since $(\underline{(m-n)x^2}$ is continuous on [0,1], it has a maximum at some $x_0 \in [0,1]$ $(\underline{(m+x)})(\underline{n+x})$

Therefore

$$d_{00}(f_{m}, f_{n}) = \frac{(m-n)\chi_{0}^{2}}{(m+\chi_{0})(n+\chi_{0})} \stackrel{2}{\leftarrow} \frac{\chi_{0}^{2}}{n+\chi_{0}} \stackrel{2}{\leftarrow} \frac{1}{n} \rightarrow 0$$

$$\implies d_{\infty}(f_{m}, f_{n}) \rightarrow 0 \text{ as } n \rightarrow \alpha$$

 \Rightarrow (fn)_{n=1} is Canchy

Therefore in general,

We can use contrapositive of (*) to get a test for non-convergence (divergence test)

Divergence Test

not Cauchy
$$\Longrightarrow$$
 not convergent

Example: Showing harmonic series is divergent Work in (R,d), d(x,y) = |x-y|Harmonic series: $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$

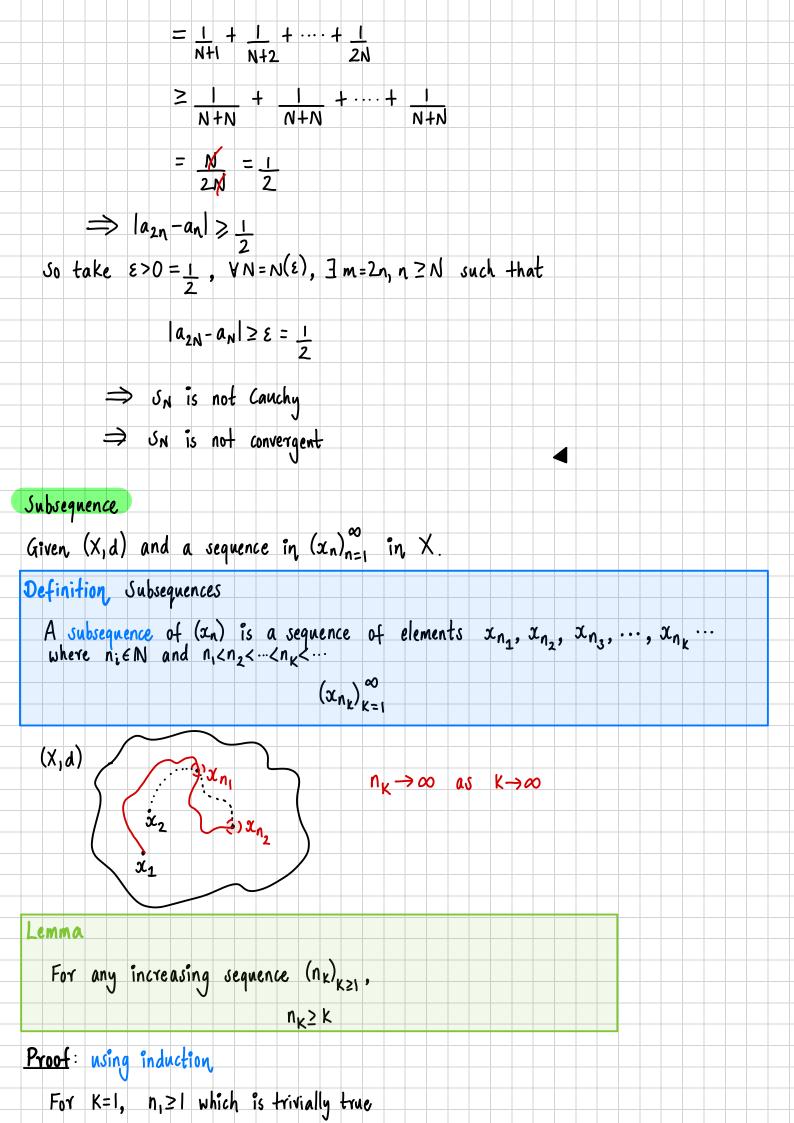
We need to show

$$S_N = \sum_{n=1}^{N} \frac{1}{N}$$

is not Cauchy, i.e. it satisfies the negation of definition of Cauchy ∃ ε>0 s.t ∀N=N(ε)>0, ∃m,n>N d(xm,xn)≥ε

Take m=2n

 $a_{2n} - a_n = \frac{1}{2N} + \frac{1}{2N-1} + \cdots + \frac{1}{N+1} + \frac{1}{N} + \cdots + \frac{1}{N} - \frac{1}{N-1} - \cdots - \frac{1}{2}$



Assuming true for K, n_k 2 k inductive hypothesis Showing P(K) \Rightarrow P(K+1) Since $(n_k)_{k\geq 1}$ is an increasing sequence, n_{K+1} > n_K Further by inductive hypothesis, $n_{k} \ge k \implies n_{k} + 1 \ge K + 1$ $\implies n_{K+1} \ge n_{K} + 1 \ge K + 1$ ⇒ n_{K+1}≥ K+1 Almost immediately, $x_n \rightarrow x$ as $n \rightarrow \infty \implies$ any subsequence x_{n_k} converges to xTheorem Convergence => every subsequence converges to same limit Suppose (X,d) is a metric space and $(x_n)_{n=1}^{\infty}$ is a sequence in X. If $x_n \rightarrow x$ as $n \rightarrow \infty$ and $(a_{n_k})_{k \in \mathbb{N}}$ is a subsequence, then $\mathfrak{X}_{n_{K}} \rightarrow \mathfrak{X}$ as $K \rightarrow \infty$

Proof:

$$x_n \rightarrow x$$
 as $n \rightarrow \infty \implies$ given any $\varepsilon > 0$, $\exists N = N(\varepsilon)$ s.t $\forall n > N$
 $d(x_n, x) < \varepsilon$

Since (n_k) is a strictly increasing sequence of natural numbers, $n_k \ge K$. It follows that $K > N \implies n_k > N$ $\implies d(x_{n_k}, x) < \varepsilon$ $\implies x_{n_k} \rightarrow x$ as $k \rightarrow \infty$

We can use the contrapositive of the above theorem for another divergence test

contrapositive test for divergence using subsequence

$$(x_{n})^{\infty} \in X^{\mathbb{N}}$$

$$n=1$$
if $\exists n_{1} < n_{2} < \cdots < n_{k} < \cdots$

$$b \qquad n_{1}' < n_{2}' < \cdots < n_{k}' < \cdots$$
such that $x_{n_{i}} \rightarrow x$ as $i \rightarrow \infty$

$$k \qquad x_{i} \rightarrow y$$
 as $i \rightarrow \infty$
with $x \neq y \Rightarrow (x_{n})_{n=1}^{\infty}$
is divergent.

Classic example: $x_n = (\pm 1)^n$ in R

For even terms n=2K, n₁=2, n₂=4, n₃=6,
$$\longrightarrow$$
 (1, 1, ..., 1) $\implies x_{2K} \rightarrow 1$
For odd terms n=2K+1, n'_1=1, n'_2=3, n'_3=5, ... \longrightarrow (-1, -1, ..., -1) $\implies x_{2K+1} \rightarrow -1$
 $\lim_{k \rightarrow \infty} x_{2k} = 1$, $\lim_{k \rightarrow \infty} x_{2k+1} = -1$

Theorem

Let (X,d) be a metric space, $(x_n)_{n=1}^{\infty}$ a Cauchy sequence and $(x_{n_k})_{k=1}^{\infty}$ a convergent subsequence.

Then $(x_n)_{n=1}^{\infty}$ is convergent and

 $\lim_{n \to \infty} \chi_n = \lim_{K \to \infty} \chi_{nK} = \chi$

<u>**Proof**</u>: We need to show that for any $\varepsilon > 0$, $\exists N = N(\varepsilon) \quad s.t \quad d(x_n, x) < \varepsilon \quad \forall n > N$

Let
$$\varepsilon > 0$$
 be given.
By definition of Cauchy, $\exists N_1 = N_1(\varepsilon) > 0$ such that $d(x_n, x_m) < \varepsilon \quad \forall m, n > N_1$
By definition of convergence, $\exists N_2 = N_2(\varepsilon) > 0$ such that $d(x_{n_K}, x) < \frac{\varepsilon}{2} \quad \forall K > N_2$
Choose $N = \max\{N_1, N_2\}$. Thus both conditions hold at the same time.
By triangle inequality
 $d(x_n, x) \leq d(x_n, x_n) + d(x_n, x_n)$

$$< \underline{\varepsilon} + \underline{\varepsilon} \qquad (n_{k} \ge k)$$

3 =

Upshot: the main obstacle for a Cauchy sequence convergence seems to be non-existence of the should be limit

Example of a function sequence that is Cauchy but not convergent Consider metric space $(C([0,1]), d_2)$ where $d_{2}(f,g) = \int_{0}^{1} |f(x) - g(x)| dx \qquad f,g \in C[0,1]$ Consider function sequence $\{f_n\}_{n\geq 2}$ be a sequence defined by $f_n(x) = \begin{cases} 0 & 0 \leq x \leq 1/2 - 1/n \\ 0 & 0 \leq x \leq 1/2 - 1/n \\ 1/2 - 1/n \leq x \leq 1/2 \\ 0 & 0 \leq x \leq 1/2 - 1/n \\ 1/2 \leq x \leq 1/2 \\ 0 & 0 \leq x \leq 1/2 - 1/n \\ 1/2 \leq x \leq 1/2 \\ 0 & 0 & 0 \leq x \leq 1/2 - 1/n \\ 1/2 \leq x \leq 1/2 \\ 0 & 0 & 0 & 0 \end{cases}$ $\begin{aligned} & (1) &$ $= \frac{1}{2} \left(\frac{1}{m} + \frac{1}{n} \right) \rightarrow 0 \quad \text{as } m, n \rightarrow \infty$ $\implies d(f_m, f_n) \rightarrow 0 \quad \text{as} \quad m, n \rightarrow 00$ ⇒ Canchy Now suppose $f_n \rightarrow f$, i.e. $d(f_n, f) \rightarrow 0$ as $n \rightarrow \infty$

which is a contradiction,

Complete Metric Spaces Definition Complete Metric Spaces Let (X,d) be a metric space Then X is complete 👄 any Cauchy sequence point converges to a point in X. If X is Known to be complete and you have a sequence you know is Cauchy then, $\exists x \in X$ such that $x_n \rightarrow x$ as $n \rightarrow \infty$ Axiom, R is complete Q is not complete $\frac{Pn}{9n} \rightarrow \sqrt{2} \quad \text{in } \mathbb{R} \quad (\sqrt{2} \notin \mathbb{Q})$ put Q into $R \rightsquigarrow$ completing Q Complete is good <u>Problem</u>: not all metric spaces are complete <u>Outcome</u>: Complete them and do so systematically Completion of metric spaces Theorem, Completion, of metric space Let (X,d) be a metric space Then there is a metric space (X^*, \hat{d}) and and an isometry $\Psi: X \rightarrow X^*$ such that i) X* is complete ii) $v(x) = X^*$ We call X* a completion and all completions of X are isometric to X* Proof: 1) <u>CASE 1</u>: X is complete \implies X = X* 2) CASE 2: X is not complete

Let (X, d) be a metric space

Let
$$P_{e}(X)$$
 be the set of all Cauchy sequences
Note $P_{e}(X) \neq \emptyset$ as $(x, \dots, x) \in P_{e}(X)$

Now define cauchy sequences (x_n) and (y_n) and a relation on $C_n(x)$ \forall $(x_n), (y_n) \in \ell_{\ell}(X), (x_n) \sim (y_n) \iff \lim_{n \to \infty} d(x_n, y_n) = 0$

$$\frac{|\operatorname{dim}: 'n' \text{ is an equivalence relation.}}{1) \underbrace{\operatorname{Reflexivity:}}_{n \to \infty} (x_n) \sim (x_n) \quad \text{since } d(x_n, x_n) = 0 \implies \lim_{n \to \infty} d(x_n, x_n) = 0$$

$$2) \underbrace{\operatorname{Symmetry:}}_{n \to \infty} \operatorname{If} (x_n) \sim (y_n) \quad \text{then } \lim_{n \to \infty} d(x_n, y_n) = 0 \implies \lim_{n \to \infty} d(y_n, x_n) = 0$$

=0

3) Transitivity: if $(x_n) \sim (y_n)$ and $(y_n) \sim (z_n)$ then $\lim_{n \to \infty} d(x_n, y_n) = 0$ and $\lim_{n \to \infty} d(y_n, z_n) = 0$ By the triangle inequality, $0 < d(x_n, z_n) \leq d(x_n, y_n) + d(y_n, z_n) \rightarrow 0$ as n→∞ algebra of limits ⇒ lim. d(xn, yn) =0 n→∞ \Rightarrow $(x_n) \sim (z_n)$

Thus ' \sim ' is an equivalence relation and $\mathcal{C}_{e}(X)$ can be split into equivalence classes. $[(x_n)] = \{(a_n) \in \mathcal{C}(X) | (x_n) \sim (a_n) \}$

The following facts are used:

if
$$(x_n) \in [(a_n)]$$
 and $(y_n) \in [(a_n)] \Longrightarrow (x_n) \sim (y_n)$

if
$$(x_n) \in [(a_n)]$$
 and $(y_n) \in [(b_n)] \Longrightarrow (x_n) \not \to (y_n)$

Let X be the set of all equivalence classes.

Observe that if
$$\lim_{n\to\infty} x_n = x$$
 and $(x_n) \sim (y_n)$, then by triangle inequality

$$0 \leq d(y_n, x) \leq d(y_n, x_n) + d(x_n, x)$$

 $\rightarrow 0 \qquad \rightarrow 0$

$$\Rightarrow$$
 lim $d(y_{n,x}) = 0$ sandwich thm

$$= \lim_{n \to \infty} y_n = \chi$$

Further observe that if
$$(x_n) \psi(y_n)$$
 then $\lim_{n \to \infty} x_n \neq \lim_{n \to \infty} y_n$.
As if $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$, then,
 $0 \leq d(x_n, y_n) \leq d(x_n, x) + d(x, y_n) \Longrightarrow \lim_{n \to \infty} d(x_n, y_n) = 0$
 $\Rightarrow (x_n) \sim (y_n) \quad z \quad \text{contradiction}$
Define function f
 $f: X \to \tilde{X} ; f(x) = [(x)] \quad \text{where any } (a_n) \in [(x)] \to x \quad \text{as } n \to \infty$
Claim: f is one to one
 $f(x) = f(y) \implies [(x)] = [(y)]$
 $\Rightarrow (x) \sim (y) \quad (a \sim b \iff [a] = [b])$
 $\Rightarrow x = y \quad (\text{shown, above})$
Define a metric on $\hat{a} \text{ on, } \tilde{X} \text{ where}$
 $\forall [(x_n)], [(y_n)], \quad \hat{a}([(x_n)], [(y_n)]) = \lim_{n \to \infty} d(x_n, y_n) \quad (x_n) \in [(x_n)]$
(Laim: $\hat{a} \text{ is a metric} \quad (y_n) \in [(y_n)]$
 $m) \quad d(x_n, y_n) \ge 0 \implies \lim_{n \to \infty} d(x_n, y_n) \ge 0 \implies \hat{d} \ge 0$
 $max \quad metric \quad (y_n) = \lim_{n \to \infty} d(x_n, y_n) = 0 \Rightarrow (x_n) \sim (y_n)$
 $max \quad metric \quad (y_n) = \lim_{n \to \infty} d(x_n, y_n) = 0 \Rightarrow (x_n) \sim (y_n)$
 $max \quad metric \quad (y_n) = \lim_{n \to \infty} d(x_n, y_n) = 0 \Rightarrow (x_n) \sim (y_n)$
 $max \quad metric \quad (y_n) = \lim_{n \to \infty} d(x_n, y_n) = 0 \Rightarrow (x_n) \sim (y_n)$
 $max \quad max \quad$

Claim:
$$\hat{d}$$
 is well defined
Juppose (xn), (xn') ∈ [(xn)] and (yn), (yn') ∈ [(yn)] such that
(xn) ~ (xn') and (yn) ~ (yn')
⇒ lim d(xn, xn') = 0 and lim d(yn, yn') = 0
Now by double triangle inequality
d(xn', yn') ≤ d(xn', xn) + d(xn, yn) + d(yn, yn')
⇒ lim d(xn', yn') ≤ lim d(xn, yn) (*1)
Similarly, d(xn, yn) ≤ d(xn', xn) + d(xn', yn') + d(yn, yn')
⇒ lim d(xn, yn) ≤ d(xn', xn) + d(xn', yn') + d(yn, yn')
⇒ lim d(xn, yn) ≤ lim d(xn', yn') (*2)
From inequalities (*1) and (*2)
lim d(xn, yn) = lim d(xn', yn')
n→∞
hence well-defined
Claim: f is an isometry
Let (X, d) and (X, d) be metric spaces.
f:X→X, f(x) = [(x)] where any (an) ∈ [(x)] → x as n→∞
 $\hat{a}(f(x), f(y)) = \hat{a}([(x)], [(y)])$
= lim d(x, y)
= lim d(x, y)

Since (xn) is Cauchy, let
$$d(x_n, x_n) < \epsilon/2$$
.
Since (yn) is Cauchy, let $d(y_n, y_n) < \epsilon/2$.
Therefore $|d(x_n, y_n) - d(x_n, y_n)| < \epsilon \implies (d(x_n, y_n))_{n \in \mathbb{N}}$ is Cauchy
 $(d(x_n, y_n))_{n \in \mathbb{N}}$ is a sequence of real numbers and Cauchy \Longrightarrow lim, $d(x_n, y_n)$ exists
 $a > 0$
Caupleterss in R.
Claim; $f(x) = \tilde{x}$ (density)
Suppose (xn) is a Cauchy sequence and $(x_n) \in [(x_n)]$. By defin of Cauchy,
 $\forall \epsilon > 0, \exists N = N(\epsilon)$ such that $\forall m, n > N$, $d(x_m, x_n) < \epsilon = \frac{1}{K}$
Let $m = n_K$, then $d(x_{n_K}, x_n) < \frac{1}{K}$
Further, let $[(x_n)_k]] = f(x_{n_K})$ (any $(a_n) \in [(x_n)_k] \Rightarrow x_{n_K})$
Then $\hat{a}([(x_n)], f(x_{n_K})) = \hat{a}([(x_n)], [(x_n)_k]) = \lim_{n \to 0} d(x_n, x_{n_K}) \leq \frac{1}{K}$
Therefore for any $\epsilon = 1/K > 0$ and any $[(x_n)] \in \tilde{x}, \exists \alpha = f(x_{n_K}) = [(y_{n_K})]$ such that
 $\hat{a}([(x_n)], f(x_{n_K})) < f(x_{n_K}) < 1/K$
i.e. every $[(x_n)] \in X$ is the limit of a sequence in $f(X)$
 $\Rightarrow \tilde{x} = f(X)$
Now we show that \tilde{X} is complete.
Jhowing that any Cauchy sequence in \tilde{X}
 $([x_n^{(1)}], [(x_n^{(1)})], [(x_n^{(2)})], [(x_n^{(2)})], ...)$
where $[(x_n^{(2)})]$ be the K** Cauchy sequence in \tilde{X}
Let $P_K = [(x_n^{(2)})]$ for $K \in \mathbb{N}$
By density, tor a fixed K, each P_K is a limit of some $[(y_n^{(2)})] \in f(x)$, i.e.

$$\hat{d}(P_{K}, q_{K}) < \frac{1}{k}$$

where $q_{k} = [(y_{n}^{(k)})]$

The sequence (9x) can be shown to be Cauchy as follows

$$\hat{d}(q_{K}, q_{\ell}) \leq \hat{d}(q_{K}, P_{K}) + \hat{d}(P_{K}, q_{\ell}) \\ \leq \hat{d}(q_{K}, P_{K}) + \hat{d}(P_{K}, P_{\ell}) + \hat{d}(P_{\ell}, q_{\ell}) \\ \leq \frac{1}{K} + \frac{1}{4} + \hat{d}(P_{K}, P_{\ell})$$

(P_K) is Cauchy so we can choose K,1 as large as we like making RHS as small as we like

Since $q_{K} \in f(X)$, $\exists y_{K} \in X$ such that

$$f(y_k) = q_k = [(y_k^k)]$$
 for a fixed K.

The sequence (y_k) must be Cauchy as $([(y_k^k)])_{k \in \mathbb{N}}$ is Cauchy in \tilde{X} and f is isometric

$$\hat{d}(f(y_k), f(y_k)) = \hat{d}(q_k, q_k) = d(y_k, y_k) \Longrightarrow$$
 Cauchy

Therefore (yk) belongs to some equivalence class $[(\alpha_n)] \in \widetilde{X}$

 $\underbrace{(\operatorname{laim}_{k \to \infty} \left[(\mathfrak{u}_{n}^{(k)}) \right], \left[(\mathfrak{u}_{n}) \right] = 0}_{k \to \infty}$

Take any E>O and observe that

 $\widehat{d}([(\mathfrak{x}_{n}^{(k)})], [(\mathfrak{x}_{n})]) \leq \widehat{d}([(\mathfrak{x}_{n}^{(k)})], [(\mathfrak{y}_{n}^{(k)})]) + \widehat{d}([(\mathfrak{y}_{n}^{(k)})], [(\mathfrak{x}_{n})]) + \operatorname{triangle inequality}$ $\leq \widehat{d}(P_{K}, q_{K}) + \widehat{d}([(\mathfrak{y}_{n}^{(k)})], [(\mathfrak{x}_{n})])$ $\leq \underline{1} + \widehat{d}([(\mathfrak{y}_{n}^{(k)})], [(\mathfrak{x}_{n})])$

$$\widehat{d}\left(\left[\left(y_{n}^{(\kappa)}\right)\right],\left[\left(x_{n}\right)\right]\right) = \widehat{d}\left(f\left(y_{k}\right),\left[\left(x_{n}\right)\right]\right) = \lim_{K \to \infty} d\left(y_{K}, y_{n}\right) \leq \varepsilon$$

$$\left(\left(y_{h} \in \left[\left(x_{n}\right)\right]\right)$$

For sufficiently large K since (y_k) is Cauchy in X. Therefore $\lim_{K \to \infty} \widehat{d}([(y_n^{(K)})], [(x_n)]) = 0$ and since $1/k \to 0$ as $k \to \infty$, we get

$$\lim_{k \to \infty} \widehat{d}([(\mathfrak{X}_n^{(k)})], [(\mathfrak{X}_n)]) = 0$$

and therefore \tilde{X} is complete

Uniqueness : Suppose that

$$(X^{*}, d^{*})$$
 and (X^{**}, d^{**})

are two completions. Need to show that these are equivalent, i.e. isometric.

Consider any arbitrary $x^* \in X^*$. Since X^* is a completion, there is a Cauchy sequence (x_n) in X such that $x_n \rightarrow x^*$ as $n \rightarrow \infty$

Similarly, assume (Xn) belongs to X** Since X** is complete,

where
$$x^{**} \in X^{**}$$
 $x_n \to x^{**}$ as $n \to \infty$

Define function

$$\varphi: \chi^* \to \chi^{**}; \ \varphi(\chi^*) = \chi^{**}$$

<u>Claim</u>: Q is one to one

Since
$$X^*$$
 is complete, \exists Cauchy sequences in $X(x_{1n})$ and (x_{2n}) such that
 $x_{1n} \rightarrow x_1^*$ and $x_{2n} \rightarrow x_2^*$ as $n \rightarrow \infty$
Suppose $f(x_1^*) = f(x_2^*) \implies x_1^{**} = x_2^{**}$

Therefore there is a Cauchy sequence in X,
$$(x_{1n}^{**})$$
 and (x_{2n}^{**}) s.t
 $x_{1n}^{**} \rightarrow x_{1}^{**}$ and $x_{2n}^{**} \rightarrow x_{2n}^{**}$

Since
$$x_1^{**} = x_2^{**}$$
, $\lim_{n \to \infty} d(x_{1n}^{**}, x_{2n}^{**}) = 0$
Since X^{*} is complete, $x_{1n}^{**} \rightarrow x_1^{*}$ and $x_{2n}^{**} \rightarrow x_2^{*}$ as $n \rightarrow \infty$ in X^{**}
Therefore since

$$\lim_{n \to \infty} d(x_{1n}^{**}, x_{2n}^{**}) = 0 \implies d(x_1^*, x_2^*) = 0 \implies x_1 = x_2$$

From above, 4 does not depend on choice of sequence of
$$(x_n)_{n\geq 1}$$

Claim: For $x \in X$, $\psi(x) = x$

If $x \in X$, then the constant sequence

$$(\alpha, \alpha, \ldots, \alpha)$$

is a sequence in X^* which converges to ∞ . So f(x) is the limit in Z of (x, ..., x) which is ∞

 $\Rightarrow f(x) = x$

$d^{**}(x_1^{**}, x_2^{**}) = d^{**}(\varphi(x_1^{*}), \varphi(x_2^{*})) = d^{*}(x_1^{*}, x_2^{*})$

hence isometric

Examples of complete metric spaces

Proposition

The metric space
$$(\mathbb{R}^N, d_{\infty})$$
 with

$$d_{\infty}(\underline{x},\underline{y}) = \sup\{|\underline{x}_i - \underline{y}_i| : 1 \le i \le N\}$$

is a complete metric space

<u>Proof</u>: Take a Canchy sequence in R^N

Recall the notation
$$\underline{x}_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)})$$

 $(\underline{x}_n)_{n=1}^{\infty}$

By defn of Cauchy, given
$$\varepsilon > 0$$
, $\exists N = N(\varepsilon) > 0$ such that $\forall m, n > N$,
 $d_{\infty}(\underline{x}_{n}, \underline{x}_{m}) < \varepsilon \implies \max\{|\underline{x}_{n}^{(i)} - \underline{x}_{m}^{(i)}| : 1 \le i \le N\} < \varepsilon$
 $\Longrightarrow |\underline{x}_{n}^{(i)} = x_{m}^{(i)}| \le \varepsilon$ for each i

Therefore sequence of real numbers $(x_n^{(i)})_{n=1}^{\infty}$ is Cauchy for each i. Since R is complete, $(x_n^{(i)})$ converges : $\exists x_i \in \mathbb{R}$ such that

N

lim x⁽ⁱ⁾ = x_i n→∞

$$\underline{\chi}_{1} = \left(\chi_{1}^{(1)}, \chi_{1}^{(2)}, \chi_{1}^{(3)}, \dots, \chi_{1}^{(N)}\right)$$

$$\underline{\chi}_{2} = \left(\chi_{2}^{(1)}, \chi_{2}^{(2)}, \chi_{2}^{(3)}, \dots, \chi_{2}^{(N)}\right)$$

$$\underline{\chi}_{3} = \left(\chi_{3}^{(1)}, \chi_{3}^{(2)}, \chi_{3}^{(3)}, \dots, \chi_{3}^{(N)}\right)$$

 $\underline{x} = (x_1, x_2, x_3, \dots, x_N)$

Construct candidate limit $\underline{x} = (x_1, ..., x_n)$

Recall in
$$(\mathbb{R}^N, d_{\infty})$$
, the sequence $(\mathfrak{A}_N)_{n=1}^{\infty}$ converges to $\mathfrak{A} \in (\mathfrak{A}_1, \dots, \mathfrak{A}_N)$

$$(x_{n}^{(i)})_{n=1}^{\infty} \quad \text{converges to } x_{i} \quad (\text{true by completeness})$$

$$\therefore \text{ Cauchy sequence } (x_{n})_{n=1}^{\infty} \in (\mathbb{R}^{N})^{N} \text{ converges in } \mathbb{R}^{N}$$

$$\implies (\mathbb{R}^{N}, d_{\infty} \text{ is complete}$$

. .

Proposition

The metric space
$$(X, dp)$$
 with $X = \mathbb{R}^n$
 $dp(x, y) = \left(\sum_{i=1}^n |x_i - y_i|\right)^{1/p}$, $p \ge 1$

is a complete metric space

Proof

Let
$$\{\underline{x}_{m}\}_{m\geq 1}$$
 be any arbitrary Cauchy sequence in (\mathbb{R}^{n}, dp) where
 $\underline{x}_{m} = (\underline{x}_{m}^{(1)}, \underline{x}_{m}^{(2)}, \dots, \underline{x}_{m}^{(n)})$

Since
$$\{\underline{x}_m\}_{m\geq 1}$$
 is Cauchy, given, $\epsilon > 0$, $\exists N = N_{\epsilon} \in \mathbb{N}$ s.t

$$d_{p}(\underline{x}_{m},\underline{x}_{n}) = \left(\sum_{i=1}^{n} |x_{m}^{(i)} - x_{n}^{(i)}|^{p}\right) < \varepsilon \quad \text{for all } m, n > N_{\varepsilon}$$

 $\implies |x_{m}^{(i)} - x_{n}^{(i)}| < \varepsilon \quad \forall n, m > N_{\varepsilon}.$ Therefore the sequence $\{x_{m}^{(i)}\}_{m=1}^{\infty}$

$$\Sigma_{m}$$
 $M = 1$

is Cauchy and by completeness of R, it converges

$$\lim_{n\to\infty} \mathcal{X}_{n}^{(1)} = \mathcal{X}_{1}$$

Therefore construct candidate limit

$$\underline{x} = (x_1, x_2, ..., x_n)$$
 candidate limit

It is obvious that
$$\underline{x} \in \mathbb{R}^{n}$$

Just need to show that $\{\underline{x}_{m}\} \rightarrow \underline{x}$ as $m \rightarrow \infty$
 $dp(\underline{x}_{m},\underline{x}_{n}) = \left(\sum_{i=1}^{n} |\underline{x}_{m}^{(i)} - \underline{x}_{n}^{(i)}|^{p}\right)^{1/p} < \varepsilon \implies \sum_{i=1}^{n} |\underline{x}_{m}^{(i)} - \underline{x}_{n}^{(i)}|^{p} < \varepsilon^{p}$ (*)
Let $n \rightarrow \infty$, we get (by completeness, $\underline{x}_{m}^{(i)} \rightarrow \underline{x}_{i}$)
 $\sum_{i=1}^{n} |\underline{x}_{m}^{(i)} - \underline{x}_{i}|^{p} < \varepsilon^{p} \implies d_{p}(\underline{x}_{m},\underline{x}) < \varepsilon$
 $i=1 \implies \underline{x}_{n} \rightarrow \underline{x}_{i}$ as $n \rightarrow \infty$
Hence Cauchy sequence $\{\underline{x}_{m}\}$ converges in \mathbb{R}^{n}
 $\implies (\mathbb{R}^{n}, d_{p})$ is complete.
Space of bounded functions are complete.
The space of bounded functions real valued functions B(s) is complete under
uniform metric d_{∞}

$$d_{\infty}(f, g) = \sup\{|f(x) - g(x)| : x \in S$$

i.e. $(B(s), d_{\infty})$ is complete <u>Proof</u>: Consider any Cauchy sequence $(f_n)_{n=1}^{\infty}$

By definition, of Cauchy,
$$\forall \epsilon > 0$$
, $\exists N = N(\epsilon) s.t \forall m, n \ge N$,

$$d_{oo}(f_n, f_m) < \varepsilon$$

$$\Rightarrow \sup_{x \in S} |f_n(x) - f_m(x)| < \varepsilon \Rightarrow |f_m(x) - f_n(x)| < \varepsilon$$

So the sequence of real numbers $(f_n(x))_{n=1}^{\infty}$ is Canchy Since R is complete,

$$f_n(x) \rightarrow f_x$$
 as $n \rightarrow \infty$

Candidate limit

$$f: S \rightarrow \mathbb{R}^{:}, f(x) = f_{x}$$

Shouring that
i)
$$f_n \rightarrow f$$
 as $n \rightarrow \infty$
2) f is bounded $\Rightarrow f \in B(s)$
2) f is bounded.
a) Since $f_n(x)$ is Cauchy \Rightarrow convergent
 $|f_n(x) - f(x)| < \epsilon$
b) Since f_n is bounded,
 $|f_n| < M$ for some $M \in \mathbb{R}$
 $|f(t)| = |f(t) - f_n(t) + f_n(t)|$
 $\leq |f(t) - f_n(t)| + |f_n(t)|$
 $< \epsilon + R$
 $\Rightarrow |f(t)| < \epsilon + R$
 $\Rightarrow |f_n(t) - f_n(t)| + |f_n(x) - f_m(x)| < \epsilon$
(consider
 $|f_n(t) - f(t)| = |f_n(t) - f_m(t) + f_m(t) - f(t)|$
 $\leq |f_n(t) - f_n(t)| + |f_m(t) - f(t)| \rightarrow 0$ as $m \rightarrow a_0$
 $\Rightarrow |f_n(t) - f(t)| < \epsilon \forall n > N$ and all $t \in S$
 $\Rightarrow d_{a_0}(f_n, f) \leq \epsilon$

Lemma
Consider
$$(X, d_0)$$
 where
 $d_0(x_1y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$ discrete metric
For any sequence $(x_n)_{n=1}^{\infty}$, if (x_n) converges, then it is eventually constant
Preet: Suppose that
 $\lim_{n \to \infty} x_n = x$
 g_y definition of convergence
 $\forall \varepsilon > 0, \exists N = N(\varepsilon) s.t \forall n > N,$
 $d_0(x_n, x) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x)$ such that
 $d_0(x_n, x) < \frac{1}{2} \quad \forall n \ge N \Rightarrow \quad d_0(x_n, x) = 0$ by definition of
 $d_0(x_n, x) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x)$ such that
 $d_0(x_n, x) < \frac{1}{2} \quad \forall n \ge N \Rightarrow \quad d_0(x_n, x) = 0$ by definition of
 $d_0(x_n, x) < \frac{1}{2} \quad \forall n \ge N \Rightarrow \quad d_0(x_n, x) = 0$
 $\Rightarrow x_n = x \quad \forall n \ge N \Rightarrow$
Proposition
Metric space (X, d_0) with
 $d_0(x, y) = \begin{cases} 1 & x \neq y \\ 0 & x \ge y \end{cases}$
is complete
Proof: consider any cauchy dequence
 $(x_n)_{n=1}^{n=1}$
By definition of cauchy,
 $\forall \varepsilon > 0, \exists N = N(\varepsilon) s.t \forall m_n > N$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
Set $\varepsilon = 1/2 \implies \exists N_0 = N(1/x) \quad \text{such that}$
 $d_0(x_m, x_n) < \varepsilon$
 $d_0(x_m, x_n) < 0$
 $d_0(x_m,$

Hence sequence eventually constant \Longrightarrow Cauchy sequence $(\alpha_n)_{n=1}^{\infty}$ converges

 \implies (X, d_o) is complete

Basic steps to show space is Complete

- Start with an arbitrary Cauchy sequence $(x_n)_{n=1}^{\infty}$

- construct a candidate limit x using definition of Cauchy under d metric

- show that $x_n \rightarrow x$ as $n \rightarrow \infty$, $x_n \in X^{iN}$

- Show that XEX

2) To show a metric space is not complete, find one Cauchy sequence that does not converge to a point in space

Jome properties of Complete spaces

Theorem

Let (X, d) be a metric space

Let A be a non-empty subset of X, i.e. $A \leq X$, $A \neq \phi$ so (A,d) is a metric space

Then

i) if (A,d) is complete \implies A is closed in X

ii) If X is complete and A is closed in (X, d) then (A, d) is complete.

Proof:

i) By definition of complete

A is complete \iff every Cauchy sequence converges to a point in A Suffices to show that $A' \subseteq A$

Suppose that $x \in A'$. Then there is a convergent sequence $(x_n)_{n=1}^{\infty}$ such that

$$x_n \rightarrow x$$
 as $n \rightarrow \infty$

But convergent sequence \Rightarrow cauchy sequence and therefore (x_n) is Cauchy

Therefore by the definition of completeness, xEA. We have that

xeA'⇒ xeA

And therefore

 $A' \subseteq A \implies A$ is closed.

(ii) Let
$$(x_n)_{n=1}^{\infty}$$
 be a Cauchy Sequence in A
Since $(x_n)_{n=1}^{\infty}$ is Cauchy in A and $A \le X$, $(x_n)_{n=1}^{\infty}$ is Cauchy in X.
Therefore by completeness in X,

But as A is closed \Rightarrow A contains all its limit points (proved in Lecture 7)

$$\Rightarrow \text{ all Cauchy sequences } (x_n)_{n=1}^{\infty} \text{ converge to a point in } \\ \Rightarrow A \text{ is complete.}$$